Opportunities big and small!

AdvansorFlex CO$_2$ refrigeration systems by Hillphoenix offer retailers of all sizes the leading-edge technology of its larger format predecessor — in a smaller format. Its name says it well — it’s flexible. Use multiple units in a distributed system for large stores. Use a single unit as the centralized system in smaller stores like convenience stores, pharmacies, and other retail establishments. AdvansorFlex has a more compact, smaller footprint that takes up less space in out-of-the-way areas such as back rooms, equipment rooms and mezzanines. An insulated, sound-resistant enclosure keeps noise down and shoppers uninterrupted as they shop. The enclosure is also weatherproof and can be installed outside or on roof tops just as easily if desired.

CO$_2$ refrigerant is a big deal.

CO$_2$ is the all-natural refrigerant at the heart of AdvansorFlex. It’s plentiful, non-flammable, non-toxic to the environment, and inexpensive. Because it’s natural, it’s exempt from future legislation and taxation. And, because it won’t deplete the ozone layer, it complies with DOE and EPA requirements. All good news for retailers worried about compliance for today and in the future.
SAVINGS IS JUST THE BEGINNING.

On Startup
AdvansorFlex™ CO₂ provides significant savings, from initial installation through improved performance in everyday use. Startup refrigerant charge, compared to a traditional HFC system, is over 80% more economical.*

* Based on a typical 2,000 pounds of R404A at $6 per pound versus a CO₂ cost of $1 per pound. Initial CO₂ cost of $2,000 is an 83% savings over $12,000 for HFC.
On Installation
Installation savings continue to add up! More economical, smaller copper sizes can be used with AdvansorFlex. Less insulation is required and less labor is needed than with a standard HFC system. Savings average 12% to 18%. Electrical installation is less expensive — a single point electrical connection is all that’s required. EMS controls integrate easily with existing building controllers. All wiring internal to the case (lights, anti-sweat, fans, defrost, sensors) is factory-wired from the case controller. Electrical design can plan on a single-wire feed that eliminates the need for additional wiring and electrical control boxes.

On Maintenance
Optimal case performance and energy usage is obtained as case controllers and electronic expansion valves (EEVs) control case temperature and superheat automatically without requiring annual maintenance adjustments. When maintenance is required, it’s in out-of-the-way areas and not on the store floor. Plus, AdvansorFlex is designed to allow easy access to rack components.

On Energy
System efficiency is based on ambient temperatures and can be enhanced by a cooler climate. All the while, case temperatures are kept optimum by case controllers and EEV’s. Better performance leads to a reduction in product shrinkage so product stays fresher, longer. All of which has a positive impact on a store’s profits.
Sustainability makes a big difference.

A CO₂-based refrigeration system says a lot about a company’s commitment to a healthier world. Those that make it a corporate and even social responsibility will find that Advansor fits well within a corporation’s sustainable mission statement. Using a natural refrigerant improves marketability with both a reduced carbon footprint and Total Equivalent Warming Impact.

Hillphoenix is the biggest name in CO₂ technology.

Numbers don’t lie and Hillphoenix has them to spare. With over 3,000 global installations and over 100 North American installations of CO₂ booster refrigeration projects, Hillphoenix is the acknowledged industry expert in CO₂ technology. The introduction of AdvansorFlex CO₂ should see those numbers grow even larger as it narrows the gap between HFC DX and CO₂ systems in smaller store applications.

AdvansorFlex - Models

<table>
<thead>
<tr>
<th>Low Temp Store Load (kbtuh)</th>
<th>Med Temp Store Load (kbtuh)</th>
<th>Chassis²</th>
<th>Physical Characteristics</th>
<th>Mechanical Line Connections³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Length (in)</td>
<td>Width (in)</td>
</tr>
<tr>
<td>50 100 2 x 2</td>
<td></td>
<td></td>
<td>139</td>
<td>39</td>
</tr>
<tr>
<td>50 300 2 x 2</td>
<td></td>
<td></td>
<td>139</td>
<td>39</td>
</tr>
<tr>
<td>70 175 2 x 2</td>
<td></td>
<td></td>
<td>139</td>
<td>39</td>
</tr>
<tr>
<td>75 230 2 x 2</td>
<td></td>
<td></td>
<td>139</td>
<td>39</td>
</tr>
<tr>
<td>125 230 2 x 2</td>
<td></td>
<td></td>
<td>139</td>
<td>39</td>
</tr>
<tr>
<td>125 425 3 x 2</td>
<td></td>
<td></td>
<td>180</td>
<td>39</td>
</tr>
</tbody>
</table>

Notes:
1. Store loads and electrical data is based on the following:
 - Standard low temp is -25°F SST.
 - Standard med temp is +15°F SST where lead compressor has an integrated variable frequency drive.
 - Gas cooler is powered separately from rack.
 - Gas cooler CO₂ outlet temp = 85°F.
2. Configuration is quantity of medium temp reciprocating compressors x quantity of low temp scroll compressors.
3. Line connections are specific to rack and may or may not coincide with field-installed lines.